
30.3 Bohr’s Theory of the Hydrogen Atom
The great Danish physicist Niels Bohr (1885–1962) made immediate use of Rutherford’s planetary model of the atom. (Figure
30.14). Bohr became convinced of its validity and spent part of 1912 at Rutherford’s laboratory. In 1913, after returning to
Copenhagen, he began publishing his theory of the simplest atom, hydrogen, based on the planetary model of the atom. For
decades, many questions had been asked about atomic characteristics. From their sizes to their spectra, much was known about
atoms, but little had been explained in terms of the laws of physics. Bohr’s theory explained the atomic spectrum of hydrogen
and established new and broadly applicable principles in quantum mechanics.

Figure 30.14 Niels Bohr, Danish physicist, used the planetary model of the atom to explain the atomic spectrum and size of the hydrogen

atom. His many contributions to the development of atomic physics and quantum mechanics, his personal influence on many students and

colleagues, and his personal integrity, especially in the face of Nazi oppression, earned him a prominent place in history. (credit: Unknown

Author, via Wikimedia Commons)

Mysteries of Atomic Spectra
As noted in Quantization of Energy , the energies of some small systems are quantized. Atomic and molecular emission and
absorption spectra have been known for over a century to be discrete (or quantized). (See Figure 30.15.) Maxwell and others had
realized that there must be a connection between the spectrum of an atom and its structure, something like the resonant
frequencies of musical instruments. But, in spite of years of efforts by many great minds, no one had a workable theory. (It was
a running joke that any theory of atomic and molecular spectra could be destroyed by throwing a book of data at it, so complex
were the spectra.) Following Einstein’s proposal of photons with quantized energies directly proportional to their wavelengths, it
became even more evident that electrons in atoms can exist only in discrete orbits.
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Figure 30.15 Part (a) shows, from left to right, a discharge tube, slit, and diffraction grating producing a line spectrum. Part (b) shows the

emission line spectrum for iron. The discrete lines imply quantized energy states for the atoms that produce them. The line spectrum for

each element is unique, providing a powerful and much used analytical tool, and many line spectra were well known for many years before

they could be explained with physics. (credit for (b): Yttrium91, Wikimedia Commons)

In some cases, it had been possible to devise formulas that described the emission spectra. As you might expect, the simplest
atom—hydrogen, with its single electron—has a relatively simple spectrum. The hydrogen spectrum had been observed in the
infrared (IR), visible, and ultraviolet (UV), and several series of spectral lines had been observed. (See Figure 30.16.) These series
are named after early researchers who studied them in particular depth.

The observed hydrogen-spectrum wavelengths can be calculated using the following formula:

where is the wavelength of the emitted EM radiation and is the Rydberg constant, determined by the experiment to be

The constant is a positive integer associated with a specific series. For the Lyman series, ; for the Balmer series,
; for the Paschen series, ; and so on. The Lyman series is entirely in the UV, while part of the Balmer series is

visible with the remainder UV. The Paschen series and all the rest are entirely IR. There are apparently an unlimited number of
series, although they lie progressively farther into the infrared and become difficult to observe as increases. The constant is
a positive integer, but it must be greater than . Thus, for the Balmer series, and . Note that can
approach infinity. While the formula in the wavelengths equation was just a recipe designed to fit data and was not based on
physical principles, it did imply a deeper meaning. Balmer first devised the formula for his series alone, and it was later found to
describe all the other series by using different values of . Bohr was the first to comprehend the deeper meaning. Again, we see
the interplay between experiment and theory in physics. Experimentally, the spectra were well established, an equation was
found to fit the experimental data, but the theoretical foundation was missing.
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Figure 30.16 A schematic of the hydrogen spectrum shows several series named for those who contributed most to their determination.

Part of the Balmer series is in the visible spectrum, while the Lyman series is entirely in the UV, and the Paschen series and others are in the

IR. Values of and are shown for some of the lines.

EXAMPLE 30.1

Calculating Wave Interference of a Hydrogen Line
What is the distance between the slits of a grating that produces a first-order maximum for the second Balmer line at an angle
of ?

Strategy and Concept

For an Integrated Concept problem, we must first identify the physical principles involved. In this example, we need to know (a)
the wavelength of light as well as (b) conditions for an interference maximum for the pattern from a double slit. Part (a) deals
with a topic of the present chapter, while part (b) considers the wave interference material of Wave Optics.

Solution for (a)

Hydrogen spectrum wavelength. The Balmer series requires that . The first line in the series is taken to be for ,
and so the second would have .

The calculation is a straightforward application of the wavelength equation. Entering the determined values for and yields

Inverting to find gives

Discussion for (a)

This is indeed the experimentally observed wavelength, corresponding to the second (blue-green) line in the Balmer series. More
impressive is the fact that the same simple recipe predicts all of the hydrogen spectrum lines, including new ones observed in
subsequent experiments. What is nature telling us?

Solution for (b)

Double-slit interference (Wave Optics). To obtain constructive interference for a double slit, the path length difference from two
slits must be an integral multiple of the wavelength. This condition was expressed by the equation

where is the distance between slits and is the angle from the original direction of the beam. The number is the order of the
interference; in this example. Solving for and entering known values yields
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Discussion for (b)

This number is similar to those used in the interference examples of Introduction to Quantum Physics (and is close to the
spacing between slits in commonly used diffraction glasses).

Bohr’s Solution for Hydrogen
Bohr was able to derive the formula for the hydrogen spectrum using basic physics, the planetary model of the atom, and some
very important new proposals. His first proposal is that only certain orbits are allowed: we say that the orbits of electrons in
atoms are quantized. Each orbit has a different energy, and electrons can move to a higher orbit by absorbing energy and drop
to a lower orbit by emitting energy. If the orbits are quantized, the amount of energy absorbed or emitted is also quantized,
producing discrete spectra. Photon absorption and emission are among the primary methods of transferring energy into and
out of atoms. The energies of the photons are quantized, and their energy is explained as being equal to the change in energy of
the electron when it moves from one orbit to another. In equation form, this is

Here, is the change in energy between the initial and final orbits, and is the energy of the absorbed or emitted photon. It
is quite logical (that is, expected from our everyday experience) that energy is involved in changing orbits. A blast of energy is
required for the space shuttle, for example, to climb to a higher orbit. What is not expected is that atomic orbits should be
quantized. This is not observed for satellites or planets, which can have any orbit given the proper energy. (See Figure 30.17.)

Figure 30.17 The planetary model of the atom, as modified by Bohr, has the orbits of the electrons quantized. Only certain orbits are

allowed, explaining why atomic spectra are discrete (quantized). The energy carried away from an atom by a photon comes from the

electron dropping from one allowed orbit to another and is thus quantized. This is likewise true for atomic absorption of photons.

Figure 30.18 shows an energy-level diagram, a convenient way to display energy states. In the present discussion, we take these
to be the allowed energy levels of the electron. Energy is plotted vertically with the lowest or ground state at the bottom and with
excited states above. Given the energies of the lines in an atomic spectrum, it is possible (although sometimes very difficult) to
determine the energy levels of an atom. Energy-level diagrams are used for many systems, including molecules and nuclei. A
theory of the atom or any other system must predict its energies based on the physics of the system.
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Figure 30.18 An energy-level diagram plots energy vertically and is useful in visualizing the energy states of a system and the transitions

between them. This diagram is for the hydrogen-atom electrons, showing a transition between two orbits having energies and .

Bohr was clever enough to find a way to calculate the electron orbital energies in hydrogen. This was an important first step that
has been improved upon, but it is well worth repeating here, because it does correctly describe many characteristics of
hydrogen. Assuming circular orbits, Bohr proposed that the angular momentum of an electron in its orbit is quantized, that
is, it has only specific, discrete values. The value for is given by the formula

where is the angular momentum, is the electron’s mass, is the radius of the th orbit, and is Planck’s constant. Note
that angular momentum is . For a small object at a radius and , so that .
Quantization says that this value of can only be equal to , etc. At the time, Bohr himself did not know why
angular momentum should be quantized, but using this assumption he was able to calculate the energies in the hydrogen
spectrum, something no one else had done at the time.

From Bohr’s assumptions, we will now derive a number of important properties of the hydrogen atom from the classical physics
we have covered in the text. We start by noting the centripetal force causing the electron to follow a circular path is supplied by
the Coulomb force. To be more general, we note that this analysis is valid for any single-electron atom. So, if a nucleus has
protons ( for hydrogen, 2 for helium, etc.) and only one electron, that atom is called a hydrogen-like atom. The spectra of
hydrogen-like ions are similar to hydrogen, but shifted to higher energy by the greater attractive force between the electron and
nucleus. The magnitude of the centripetal force is , while the Coulomb force is . The tacit assumption
here is that the nucleus is more massive than the stationary electron, and the electron orbits about it. This is consistent with the
planetary model of the atom. Equating these,

Angular momentum quantization is stated in an earlier equation. We solve that equation for , substitute it into the above, and
rearrange the expression to obtain the radius of the orbit. This yields:

where is defined to be the Bohr radius, since for the lowest orbit and for hydrogen , . It is left for
this chapter’s Problems and Exercises to show that the Bohr radius is
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These last two equations can be used to calculate the radii of the allowed (quantized) electron orbits in any hydrogen-like atom.
It is impressive that the formula gives the correct size of hydrogen, which is measured experimentally to be very close to the
Bohr radius. The earlier equation also tells us that the orbital radius is proportional to , as illustrated in Figure 30.19.

Figure 30.19 The allowed electron orbits in hydrogen have the radii shown. These radii were first calculated by Bohr and are given by the

equation . The lowest orbit has the experimentally verified diameter of a hydrogen atom.

To get the electron orbital energies, we start by noting that the electron energy is the sum of its kinetic and potential energy:

Kinetic energy is the familiar , assuming the electron is not moving at relativistic speeds. Potential energy for
the electron is electrical, or , where is the potential due to the nucleus, which looks like a point charge. The nucleus
has a positive charge ; thus, , recalling an earlier equation for the potential due to a point charge. Since the
electron’s charge is negative, we see that . Entering the expressions for and , we find

Now we substitute and from earlier equations into the above expression for energy. Algebraic manipulation yields

for the orbital energies of hydrogen-like atoms. Here, is the ground-state energy for hydrogen and is
given by

Thus, for hydrogen,

Figure 30.20 shows an energy-level diagram for hydrogen that also illustrates how the various spectral series for hydrogen are
related to transitions between energy levels.
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Figure 30.20 Energy-level diagram for hydrogen showing the Lyman, Balmer, and Paschen series of transitions. The orbital energies are

calculated using the above equation, first derived by Bohr.

Electron total energies are negative, since the electron is bound to the nucleus, analogous to being in a hole without enough
kinetic energy to escape. As approaches infinity, the total energy becomes zero. This corresponds to a free electron with no
kinetic energy, since gets very large for large , and the electric potential energy thus becomes zero. Thus, 13.6 eV is needed to
ionize hydrogen (to go from –13.6 eV to 0, or unbound), an experimentally verified number. Given more energy, the electron
becomes unbound with some kinetic energy. For example, giving 15.0 eV to an electron in the ground state of hydrogen strips it
from the atom and leaves it with 1.4 eV of kinetic energy.

Finally, let us consider the energy of a photon emitted in a downward transition, given by the equation to be

Substituting , we see that

Dividing both sides of this equation by gives an expression for :

It can be shown that

is the Rydberg constant. Thus, we have used Bohr’s assumptions to derive the formula first proposed by Balmer years earlier as a
recipe to fit experimental data.
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We see that Bohr’s theory of the hydrogen atom answers the question as to why this previously known formula describes the
hydrogen spectrum. It is because the energy levels are proportional to , where is a non-negative integer. A downward
transition releases energy, and so must be greater than . The various series are those where the transitions end on a certain
level. For the Lyman series, — that is, all the transitions end in the ground state (see also Figure 30.20). For the Balmer
series, , or all the transitions end in the first excited state; and so on. What was once a recipe is now based in physics, and
something new is emerging—angular momentum is quantized.

Triumphs and Limits of the Bohr Theory
Bohr did what no one had been able to do before. Not only did he explain the spectrum of hydrogen, he correctly calculated the
size of the atom from basic physics. Some of his ideas are broadly applicable. Electron orbital energies are quantized in all atoms
and molecules. Angular momentum is quantized. The electrons do not spiral into the nucleus, as expected classically
(accelerated charges radiate, so that the electron orbits classically would decay quickly, and the electrons would sit on the
nucleus—matter would collapse). These are major triumphs.

But there are limits to Bohr’s theory. It cannot be applied to multielectron atoms, even one as simple as a two-electron helium
atom. Bohr’s model is what we call semiclassical. The orbits are quantized (nonclassical) but are assumed to be simple circular
paths (classical). As quantum mechanics was developed, it became clear that there are no well-defined orbits; rather, there are
clouds of probability. Bohr’s theory also did not explain that some spectral lines are doublets (split into two) when examined
closely. We shall examine many of these aspects of quantum mechanics in more detail, but it should be kept in mind that Bohr
did not fail. Rather, he made very important steps along the path to greater knowledge and laid the foundation for all of atomic
physics that has since evolved.

PHET EXPLORATIONS

Models of the Hydrogen Atom
How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the
atom. Check how the prediction of the model matches the experimental results.

Click to view content (https://phet.colorado.edu/sims/hydrogen-atom/hydrogen-atom-600.png)

Figure 30.21

Models of the Hydrogen Atom (https://phet.colorado.edu/en/simulation/legacy/hydrogen-atom)

30.4 X Rays: Atomic Origins and Applications
Each type of atom (or element) has its own characteristic electromagnetic spectrum. X rays lie at the high-frequency end of an
atom’s spectrum and are characteristic of the atom as well. In this section, we explore characteristic x rays and some of their
important applications.

We have previously discussed x rays as a part of the electromagnetic spectrum in Photon Energies and the Electromagnetic
Spectrum. That module illustrated how an x-ray tube (a specialized CRT) produces x rays. Electrons emitted from a hot filament
are accelerated with a high voltage, gaining significant kinetic energy and striking the anode.

There are two processes by which x rays are produced in the anode of an x-ray tube. In one process, the deceleration of electrons
produces x rays, and these x rays are called bremsstrahlung, or braking radiation. The second process is atomic in nature and
produces characteristic x rays, so called because they are characteristic of the anode material. The x-ray spectrum in Figure
30.22 is typical of what is produced by an x-ray tube, showing a broad curve of bremsstrahlung radiation with characteristic x-
ray peaks on it.
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